Stranski–Krastanov growth of InGaN quantum dots emitting in green spectra
نویسندگان
چکیده
Self-assembled InGaN quantum dots (QDs) were grown on GaN templates by metalorganic chemical vapor deposition. 2D–3D growth mode transition through Stranski–Krastanov mode was observed via atomic force microscopy. The critical thickness for In0.67Ga0.33N QDs was determined to be four monolayers. The effects of growth temperature, deposition thickness, and V/III ratio on QD formation were examined. The capping of InGaN QDs with GaN was analyzed. Optimized InGaN quantum dots emitted in green spectra at room temperature. PACS 81.15.Gh · 81.16.Dn · 81.07.Ta · 78.66.Fd
منابع مشابه
Blue–green–red LEDs based on InGaN quantum dots grown by plasma-assisted molecular beam epitaxy
Self-assembled InGaN quantum dots were grown in the Stranski–Krastanov mode by plasma-assisted molecular beam epitaxy. The average dot height, diameter and density are 3 nm, 30 nm and 7 × 1010 cm–2, respectively. The dot density was found to decrease as the growth temperature increases. The cathodoluminescence emission peak of the InGaN/GaN multiple layer quantum dots (MQDs) was found to red sh...
متن کاملApproaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells.
Optimization of internal quantum efficiency (IQE) for InGaN quantum wells (QWs) light-emitting diodes (LEDs) is investigated. Staggered InGaN QWs with large electron-hole wavefunction overlap and improved radiative recombination rate are investigated for nitride LEDs application. The effect of interface abruptness in staggered InGaN QWs on radiative recombination rate is studied. Studies show t...
متن کاملSelf-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy
Self-assembled InGaN quantum dots (QDs) have been grown using metalorganic vapor-phase epitaxy (MOVPE), without using antisurfactant. Using 120 s annealing, InGaN QDs have been successfully formed with a circular base diameter of 40 nm and an average height of 4 nm, with QDs density of 4 10 cm . The InGaN QDs have peak photoluminescence (PL) wavelengths of 519 and 509 nm for samples without and...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملInGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers
InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier ...
متن کامل